Threshold of Singularity Formation in the Semilinear Wave Equation
نویسنده
چکیده
Solutions of the semilinear wave equation are found numerically in three spatial dimensions with no assumed symmetry using distributed adaptive mesh refinement. The threshold of singularity formation is studied for the two cases in which the exponent of the nonlinear term is either p = 5 or p = 7. Near the threshold of singularity formation, numerical solutions suggest an approach to self-similarity for the p = 7 case and an approach to a scale evolving static solution for p = 5.
منابع مشابه
Slow Blow up Solutions for Certain Critical Wave Equations
We describe in this article two recent results [11], [12], obtained by the author jointly with W. Schlag and D. Tataru, about singular solutions for the critical wave maps equation, as well as the critical focussing semilinear wave equation. Specifically, the first result [11] establishes for the first time the conjectured formation of singularities for co-rotational wave maps into the sphere S...
متن کاملOn Type I Blow up Formation for the Critical Nlw
We introduce a suitable concept of weak evolution in the context of the radial quintic focussing semilinear wave equation on R3`1, that is adapted to continuation past type II singularities. We show that the weak extension leads to type I singularity formation for initial data corresponding to: (i) the Kenig-Merle blow-up solutions with initial energy below the ground state and (ii) the Krieger...
متن کاملThe existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملBlow up in Finite Time and Dynamics of Blow up Solutions for the L–critical Generalized Kdv Equation
In this paper, we are interested in the phenomenon of blow up in finite time (or formation of singularity in finite time) of solutions of the critical generalized KdV equation. Few results are known in the context of partial differential equations with a Hamiltonian structure. For the semilinear wave equation, or more generally for hyperbolic systems, the finite speed of propagation allows one ...
متن کاملSolving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005